Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Relationship Between Diesel Fuel Spray Vapor Penetration/Dispersion and Local Fuel Mixture Fraction

2011-04-12
2011-01-0686
The fuel-ambient mixture in vaporized fuel jets produced by liquid sprays is fundamental to the performance and operation of engines. Unfortunately, experimental difficulties limit the direct measurement of local fuel-ambient mixture, inhibiting quantitative assessment of mixing. On the other hand, measurement of global quantities, such as the jet penetration rate, is relatively straightforward. Simplified models to predict local fuel-ambient mixture have also been developed, based on these global parameters. However, experimental data to validate these models over a range of conditions is needed. In the current work, we perform measurements of jet global quantities such as vapor-phase penetration, liquid-phase penetration, spreading angle, and nozzle flow coefficients over a range of conditions in a high-temperature, high-pressure vessel.
Technical Paper

Full Cycle CFD Simulations to Study Thermal and Chemical Effects of Fuel Injection during Negative Valve Overlap in an Automotive Research Engine

2010-10-25
2010-01-2236
Recently experiments were conducted on an automotive homogeneous-charge-compression-ignition (HCCI) research engine with a negative-valve-overlap (NVO) cam. In the study two sets of experiments were run. One set injected a small quantity of fuel (HPLC-grade iso-octane) during NVO in varying amounts and timings followed by a larger injection during the intake stroke. The other set of experiments was similar, but did not include an NVO injection. By comparing both sets of results researchers were able to investigate the use of NVO fuel injection to control main combustion phasing under light-load conditions. For this paper a subset of these experiments are modeled with the computational-fluid-dynamics (CFD) code KIVA3V [ 6 ] using a multi-zone combustion model. The computational domain includes the combustion chamber, and intake and exhaust valves, ports, and runners. Multiple cycles are run to minimize the influence of initial conditions on final simulated results.
Journal Article

An Investigation into the Effects of Fuel Properties and Engine Load on UHC and CO Emissions from a Light-Duty Optical Diesel Engine Operating in a Partially Premixed Combustion Regime

2010-05-05
2010-01-1470
The behavior of the engine-out UHC and CO emissions from a light-duty diesel optical engine operating at two PPCI conditions was investigated for fifteen different fuels, including diesel fuels, biofuel blends, n-heptane-iso-octane mixtures, and n-cetane-HMN mixtures. The two highly dilute (9-10% O₂) early direct injection PPCI conditions included a low speed (1500 RPM) and load (3.0 bar IMEP) case~where the UHC and CO have been found to stem from overly-lean fuel-air mixtures~and a condition with a relatively higher speed (2000 RPM) and load (6.0 bar IMEP)~where globally richer mixtures may lead to different sources of UHC and CO. The main objectives of this work were to explore the general behavior of the UHC and CO emissions from early-injection PPCI combustion and to gain an understanding of how fuel properties and engine load affect the engine-out emissions.
Journal Article

Thermal and Chemical Effects of NVO Fuel Injection on HCCI Combustion

2010-04-12
2010-01-0164
Fuel injection during negative valve overlap (NVO) can extend low-load gasoline HCCI operation through control of main combustion phasing. Reactions and heat release accompanying NVO fuel injection give rise to changes in temperature and composition of the charge prior to main combustion. The extent of reaction of injected NVO fuel and the relative importance of resulting thermal and chemical effects on main combustion are a current research topic. In this work, bulk temperature computations are used to quantify thermal conditions prior to main ignition for cases with and without NVO fueling. To separate measured thermal effects from chemical effects of NVO fuel reactions on the main combustion, cases without NVO fuel but with similar mixture temperatures and combustion phasing are compared. Effects of varying NVO fuel amount and injection timing on heat release, combustion phasing, bulk temperature evolution, and iso-octane ignition temperatures are analyzed.
Journal Article

Determination of Cycle Temperatures and Residual Gas Fraction for HCCI Negative Valve Overlap Operation

2010-04-12
2010-01-0343
Fuel injection during negative valve overlap offers a promising method of controlling HCCI combustion, but sorting out the thermal and chemical effects of NVO fueling requires knowledge of temperatures throughout the cycle. Computing bulk temperatures throughout closed portions of the cycle is relatively straightforward using an equation of state, once a temperature at one crank angle is established. Unfortunately, computing charge temperatures at intake valve closing for NVO operation is complicated by a large, unknown fraction of residual gases at unknown temperature. To address the problem, we model blowdown and recompression during exhaust valve opening and closing events, allowing us to estimate in-cylinder charge temperatures based on exhaust-port measurements. This algorithm permits subsequent calculation of crank-angle-resolved bulk temperatures and residual gas fraction over a wide range of NVO operation.
Technical Paper

Influence of Spray-Target and Squish Height on Sources of CO and UHC in a HSDI Diesel Engine During PPCI Low-Temperature Combustion

2009-11-02
2009-01-2810
Laser induced fluorescence (LIF) imaging during the expansion stroke, exhaust gas emissions, and cylinder pressure measurements were used to investigate the influence on combustion and CO/UHC emissions of variations in squish height and fuel spray targeting on the piston. The engine was operated in a highly dilute, partially premixed, low-temperature combustion mode. A small squish height and spray targeting low on the piston gave the lowest exhaust emissions and most rapid heat release. The LIF data show that both the near-nozzle region and the squish volume are important sources of UHC emissions, while CO is dominated by the squish region and is more abundant near the piston top. Emissions from the squish volume originate primarily from overly lean mixture. At the 3 bar load investigated, CO and UHC levels in mixture leaving the bowl and ring-land crevice are low.
Journal Article

Detailed Unburned Hydrocarbon Investigations in a Highly-Dilute Diesel Low Temperature Combustion Regime

2009-04-20
2009-01-0928
The objective of this research is a detailed investigation of unburned hydrocarbon (UHC) in a highly-dilute diesel low temperature combustion (LTC) regime. This research concentrates on understanding the mechanisms that control the formation of UHC via experiments and simulations in a 0.48L signal-cylinder light duty engine operating at 2000 r/min and 5.5 bar IMEP with multiple injections. A multi-gas FTIR along with other gas and smoke emissions instruments are used to measure exhaust UHC species and other emissions. Controlled experiments in the single-cylinder engine are then combined with three computational tools, namely heat release analysis of measured cylinder pressure, analysis of spray trajectory with a phenomenological spray model using in-cylinder thermodynamics [1], and KIVA-3V Chemkin CFD computations recently tested at LTC conditions [2].
Journal Article

Fundamental Spray and Combustion Measurements of JP-8 at Diesel Conditions

2008-04-14
2008-01-1083
For logistical reasons, the military requires that jet fuel (JP-8, F-34) be used in both jet engines and diesel engines. While JP-8-fueled diesel engines appear to operate successfully in many cases, negative impacts, including engine failures, are occasionally reported. As diesel combustion with JP-8 has not been explored in great detail, fundamental information about JP-8 fuel spray combustion is needed. In this study, we report measurements of liquid-phase penetration length, vapor penetration, and ignition delay made in an optically-accessible combustion vessel over a range of high-temperature, high-pressure operating conditions applicable to a diesel engine. Results show that the liquid-phase penetration of JP-8 is less than that of diesel, owing to the lower boiling point temperatures of JP-8. Despite the more rapid vaporization, the vapor penetration rate of JP-8 matches that of diesel and ignition does not advance.
Journal Article

The Impact of a Non-Linear Turbulent Stress Relationship on Simulations of Flow and Combustion in an HSDI Diesel Engine

2008-04-14
2008-01-1363
In-cylinder flow and combustion processes simulated with the standard k-ε turbulence model and with an alternative model-employing a non-linear, quadratic equation for the turbulent stresses-are contrasted for both motored and fired engine operation at two loads. For motored operation, the differences observed in the predictions of mean flow development are small and do not emerge until expansion. Larger differences are found in the spatial distribution and magnitude of turbulent kinetic energy. The non-linear model generally predicts lower energy levels and larger turbulent time scales. With fuel injection and combustion, significant differences in flow structure and in the spatial distribution of soot are predicted by the two models. The models also predict considerably different combustion efficiencies and NOx emissions.
Journal Article

Effects of Piston Bowl Geometry on Mixture Development and Late-Injection Low-Temperature Combustion in a Heavy-Duty Diesel Engine

2008-04-14
2008-01-1330
Low-temperature combustion (LTC) strategies for diesel engines are of increasing interest because of their potential to significantly reduce particulate matter (PM) and nitrogen oxide (NOx) emissions. LTC with late fuel injection further offers the benefit of combustion phasing control because ignition is closely coupled to the fuel injection event. But with a short ignition-delay, fuel jet mixing processes must be rapid to achieve adequate premixing before ignition. In the current study, mixing and pollutant formation of late-injection LTC are studied in a single-cylinder, direct-injection, optically accessible heavy-duty diesel engine using three laser-based imaging diagnostics. Simultaneous planar laser-induced fluorescence of the hydroxyl radical (OH) and combined formaldehyde (H2CO) and polycyclic aromatic hydrocarbons (PAH) are compared with vapor-fuel concentration measurements from a non-combusting condition.
Technical Paper

Fuel Stratification for Low-Load HCCI Combustion: Performance & Fuel-PLIF Measurements

2007-10-29
2007-01-4130
Fuel stratification has been investigated as a means of improving the low-load combustion efficiency in an HCCI engine. Several stratification techniques were examined: different GDI injectors, increased swirl, and changes in injection pressure, to determine which parameters are effective for improving the combustion efficiency while maintaining NOx emissions below U.S. 2010 limits. Performance and emission measurements were obtained in an all-metal engine. Corresponding fuel distribution measurements were made with fuel PLIF imaging in a matching optically accessible engine. The fuel used was iso-octane, which is a good surrogate for gasoline. For an idle fueling rate (ϕ = 0.12), combustion efficiency was improved substantially, from 64% to 89% at the NOx limit, using delayed fuel injection with a hollow-cone injector at an injection pressure of 120 bar.
Technical Paper

Fuel Injection and Mean Swirl Effects on Combustion and Soot Formation in Heavy Duty Diesel Engines

2007-04-16
2007-01-0912
High-speed video imaging in a swirl-supported (Rs = 1.7), direct-injection heavy-duty diesel engine operated with moderate-to-high EGR rates reveals a distinct correlation between the spatial distribution of luminous soot and mean flow vorticity in the horizontal plane. The temporal behavior of the experimental images, as well as the results of multi-dimensional numerical simulations, show that this soot-vorticity correlation is caused by the presence of a greater amount of soot on the windward side of the jet. The simulations indicate that while flow swirl can influence pre-ignition mixing processes as well as post-combustion soot oxidation processes, interactions between the swirl and the heat release can also influence mixing processes. Without swirl, combustion-generated gas flows influence mixing on both sides of the jet equally. In the presence of swirl, the heat release occurs on the leeward side of the fuel sprays.
Technical Paper

End-of-Injection Over-Mixing and Unburned Hydrocarbon Emissions in Low-Temperature-Combustion Diesel Engines

2007-04-16
2007-01-0907
Although low-temperature combustion (LTC) strategies for compression-ignition engines can achieve very low emissions of nitrogen oxides (NOx) and particulate matter (PM) at high efficiency, they typically have increased emissions of other pollutants, including unburned hydrocarbons (UHC). In the current study, the equivalence ratio of mixtures near the injector are quantified under non-combusting conditions by planar laser-Rayleigh scattering (PLRS) in a constant-volume combustion chamber and by planar laser-induced fluorescence (PLIF) of a fuel tracer (toluene) in a single-cylinder direct-injection heavy-duty diesel engine at typical LTC conditions. The optical diagnostic images show that the transient ramp-down at the end of fuel injection produces a low-momentum, fuel-lean mixture in the upstream region of the jet, which persists late in the cycle.
Technical Paper

The Effect of Swirl Ratio and Fuel Injection Parameters on CO Emission and Fuel Conversion Efficiency for High-Dilution, Low-Temperature Combustion in an Automotive Diesel Engine

2006-04-03
2006-01-0197
Engine-out CO emission and fuel conversion efficiency were measured in a highly-dilute, low-temperature diesel combustion regime over a swirl ratio range of 1.44-7.12 and a wide range of injection timing. At fixed injection timing, an optimal swirl ratio for minimum CO emission and fuel consumption was found. At fixed swirl ratio, CO emission and fuel consumption generally decreased as injection timing was advanced. Moreover, a sudden decrease in CO emission was observed at early injection timings. Multi-dimensional numerical simulations, pressure-based measurements of ignition delay and apparent heat release, estimates of peak flame temperature, imaging of natural combustion luminosity and spray/wall interactions, and Laser Doppler Velocimeter (LDV) measurements of in-cylinder turbulence levels are employed to clarify the sources of the observed behavior.
Technical Paper

Multiple Simultaneous Optical Diagnostic Imaging of Early-Injection Low-Temperature Combustion in a Heavy-Duty Diesel Engine

2006-04-03
2006-01-0079
In-cylinder spray, mixing, combustion, and pollutant-formation processes for low-load (4 bar IMEP), low-temperature combustion conditions (12.7% charge oxygen, ∼2170 K stoichiometric adiabatic flame temperature) with early fuel injection (SOI=-22° ATDC) at two different charge densities (naturally aspirated, 1.34 bar abs. boost) were studied in an optical heavy-duty diesel engine using simultaneous pairings of multiple laser/imaging diagnostics. Laser-elastic/Mie scattering showed liquid-fuel penetration, fuel fluorescence indicated the leading edge of the vapor jet, chemiluminescence imaging showed the location of ignition, OH fluorescence probed the hot second-stage combustion, and soot luminosity and soot laser-induced incandescence measured development of in-cylinder soot.
Technical Paper

Jet-Wall Interaction Effects on Diesel Combustion and Soot Formation

2005-04-11
2005-01-0921
The effects of wall interaction on combustion and soot formation processes of a diesel fuel jet were investigated in an optically-accessible constant-volume combustion vessel at experimental conditions typical of a diesel engine. At identical ambient and injector conditions, soot processes were studied in free jets, plane wall jets, and “confined” wall jets (a box-shaped geometry simulating secondary interaction with adjacent walls and jets in an engine). The investigation showed that soot levels are significantly lower in a plane wall jet compared to a free jet. At some operating conditions, sooting free jets become soot-free as plane wall jets. Possible mechanisms to explain the reduced or delayed soot formation upon wall interaction include an increased fuel-air mixing rate and a wall-jet-cooling effect. However, in a confined-jet configuration, there is an opposite trend in soot formation.
Technical Paper

An Experimental Assessment of Turbulence Production, Reynolds Stress and Length Scale (Dissipation) Modeling in a Swirl-Supported DI Diesel Engine

2003-03-03
2003-01-1072
Simultaneous measurements of the radial and the tangential components of velocity are obtained in a high-speed, direct-injection diesel engine typical of automotive applications. Results are presented for engine operation with fuel injection, but without combustion, for three different swirl ratios and four injection pressures. With the mean and fluctuating velocities, the r-θ plane shear stress and the mean flow gradients are obtained. Longitudinal and transverse length scales are also estimated via Taylor's hypothesis. The flow is shown to be sufficiently homogeneous and stationary to obtain meaningful length scale estimates. Concurrently, the flow and injection processes are simulated with KIVA-3V employing a RNG k-ε turbulence model. The measured turbulent kinetic energy k, r-θ plane mean strain rates ( 〈Srθ〉, 〈Srr〉, and 〈Sθθ〉 ), deviatoric turbulent stresses , and the r-θ plane turbulence production terms are compared directly to the simulated results.
Technical Paper

The Evolution of Flow Structures and Turbulence in a Fired HSDI Diesel Engine

2001-09-24
2001-01-3501
In-cylinder fluid velocity is measured in an optically accessible, fired HSDI engine at idle. The velocity field is also calculated, including the full induction stroke, using multi-dimensional fluid dynamics and combustion simulation models. A detailed comparison between the measured and calculated velocities is performed to validate the computed results and to gain a physical understanding of the flow evolution. Motored measurements are also presented, to clarify the effects of the fuel injection process and combustion on the velocity field evolution. The calculated mean in-cylinder angular momentum (swirl ratio) and mean flow structures prior to injection agree well with the measurements. Modification of the mean flow by fuel injection and combustion is also well captured.
Technical Paper

Piston Wetting in an Optical DISI Engine: Fuel Films, Pool Fires, and Soot Generation

2001-03-05
2001-01-1203
Piston-wetting effects are investigated in an optical direct-injection spark-ignition (DISI) engine. Fuel spray impingement on the piston leads to the formation of fuel films, which are visualized with a laser-induced fluorescence (LIF) imaging technique. Oxygen quenching is found to reduce the fluorescence yield from liquid gasoline. Fuel films that exist during combustion of the premixed charge ignite to create piston-top pool fires. These fires are characterized using direct flame imaging. Soot produced by the pool fires is imaged using laser elastic scattering and is found to persist throughout the exhaust stroke, implying that piston-top pool fires are a likely source of engine-out particulate emissions for DISI engines.
Technical Paper

Characterization of Combustion, Piston Temperatures, Fuel Sprays, and Fuel-Air Mixing in a DISI Optical Engine

2000-10-16
2000-01-2900
A transparent direct-injection spark-ignition engine incorporating a rapid-acting, drop-down cylinder has been built. The design enables access in less than a minute for cleaning windows. Combustion performance of the optical engine is characterized in terms of indicated pressure and coefficient of variation of indicated pressure as a function of injection timing. Piston temperatures are measured and a skip-fire routine is developed so that quartz piston top temperatures agree with a matching non-optical engine. Laser-induced fluorescence imaging of in-cylinder fuel injections highlights the effects of ambient pressure and fuel temperature on spray morphology. Measurements of gasoline vapor distribution provide statistics on heterogeneity of fuel distribution as a function of injection timing. Flame imaging records details of flame development which depend on the degree of fuel mixing.
X